PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Time-correlation functions in molecular liquids studied by the mode-coupling theory based
on the interaction-site model
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Numerical results for longitudinal current spectra, velocity autocorrelation functions, and diffusion coeffi-
cients of a model diatomic liquid are presented using the recently developed theory for dynamics of classical
polyatomic fluids. The theory is based on the interaction-site model for molecular liquids, the projection-
operator formalism, and mode-coupling theory. The effect of the inclusion of a slow contribution in memory
kernels, represented by the mode-coupling expression, on the aforementioned dynamical quantities is dis-
cussed. A molecular dynamics simulation of the same system is also performed to test the accuracy of our
theory, and the theoretical results are found to be in fair agreement with those obtained from the simulation.
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[. INTRODUCTION exploiting “frequency sum rules,” and, for the treatment of
the slow portion, we developed a mode-coupling theory for
molecular liquids based on the interaction-site model.

The resulting theory in paper Il provides closed nonlinear

In two recent paperEl,2] (hereafter referred to as papers
I and Il, respectively, we developed a microscopic theory

for the dynamics of polyatomic fluids based on thegqations for a self-consistent treatment of density propaga-
projection-operator formalism of Zwanzig and M48-5], o in a classical polyatomic fluid. This paper presents nu-

and on the interaction-site model for molecular liquies’].  merical results for longitudinal current spectra, velocity au-
In paper |, an approximation scheme was developed fofocorrelation functions, and diffusion coefficients of a model
memory functions appearing in the generalized Langevirdiatomic liquid based on this theory, and a consequence of
equation by assuming an exponential form for the memorythe inclusion of the slow portion in the memory functions is
functions, and by extending the method of Lovesey and codiscussed. The site-site static structure factors and direct cor-
workers for monatomic liquid$8,9] to polyatomic fluids. relation functions, which are required as input in our theory
The resulting theory was applied to calculations of spacefor dynamics, are obtained from an integral equation theory
time density correlation functions and longitudinal currentconventionally referred to as ex-RIS{the extended version
spectra, and was shown to provide a rather satisfactory a®f the reference interaction-site meth@@2,23. To test the
count of the main features of collective excitations in classi-accuracy of the theory, a molecular dynamics simulation of
cal molecular liquids. the same system is also performed, and the theoretical results
However, an intense investigation through theoretical, exare compared with those obtained from the simulation.
perimental, and molecular dynamics simulation studies for
simple liquids has revealed that the microscopic processes Il. THEORY
underlying various time-dependent phenomena cannot be
fully accounted for by a simplified memory-function ap-
proach[10—12. In particular, the assumption that the decay
of the memory functions is ruled by a simple exponential-
type relaxation must be significantly revised in view of the

In this section, we briefly outline the theory for dynamics
of molecular liquids that is needed in our theoretical calcu-
lations. For their derivation, we refer to papers | and Il. A
theory for velocity correlation functions and diffusion coef-

o . ficients of polyatomic fluids is also presented. Throughout
results of the kinetic framework developed for dense slmplehis sectionp, V\ye consider a homogenpeous and isotropi?: fluid

liquids [13-21. This motivated us to improve the theory ., osed oN rigid molecules in a volumd at the inverse
further for the dynamics of polyatomic fluids: this work was temperature@=1/kgT, and the thermodynamic limit with

presented in paper |I. _ densityp=N/V is implied.
The central idea adopted in paper Il was borrowed from

the works of Sjgren [20,21], and was to separate the

memory functions into a fast portion arising from rapidly

decaying “binary collision” contributions, and a slow por-  We begin with the definition of two basic dynamical vari-

tion which stems from correlated collisional effects. In paperablesdp andj. dp andj are row vectors whose components

Il, the fast portion of the memory functions was obtained byare, respectively, a local density and a longitudinal current
density of atom(site) « at timet in Fourierk space:

A. Basic definitions
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) N ere o The matrices of the site-site dynamic structure factors and
Ja(k,t)EEi vi (et (2)  the longitudinal current spectra are defined, respectively, as
the time Fourier transforms of the corresponding time-

where r{(t) and v{',(t) denote the location and the correlation function matrices:

component velocity of atore in theith molecular at time, -

respectively, and the wave vectioris chosen such that it is S(k,w)zf dt €“tF(k,t), (12
along thez axis of the space-fixed laboratory frame. Hereaf- -

ter, the Greek subscripts and superscripts refer to the inter-
action sites of a molecule, and the Roman letters label the
molecules unless specified otherwise. These two densities
satisfy the continuity equation

CL(k,w)EJ:dt e“t(k,t). (13

The continuity equatiohEg. (3)], implies that these two ma-

Spa(k, 1) =iKj (K1), (3)  trices are connected through the relation
where the dot denotes the time derivative. w2
The matrices of the site-site intermediate scattering func- CiLk,w)= Fs(k,w)- (14)

tions and the longitudinal current correlation functions are

defined, respectively, by We define here for later convenience the unnormalized and

F(k,t)=(8p(K), 8p(K,1)) 4) normalizednth frequency moment matrices 8k, w):
N — 1 (= d"
Ik, H)=((k).j(k,1)). 5 o= EJ do 0"Sk,0)=(—-1)" — grFk|
(The absence of any indication for timein a dynamical t:0(15)

variable means that the latter is evaluated=a0.) Here the

inner product of two row vectord\; andA,, is defined as N -1 —
the canonical ensemble average (@)=} > %dw Skw)| =ax (k), (16
(AL, A= <A1A2) (6) where we have used E(7) and the inverse relation of Eq.
(12).

We next consider single-particle counterparts. The term
“particle” in this paper refers to one molecule as a whole,
and not to an individual atom which constitutes the mol-
ecule. Our basic dynamical variables in this case are density
and longitudinal current density of an arbitrarily chosen

F(k,0)= x(k) =w(k) + ph(k), @) tagged particle,gp® and j°, whose components are given,
respectively, by
wherew(k) and h(k) are the intramolecular and intermo-

WhereAI denotes a column vector adjoint #o;, and the
factor 1N is a matter of convention.

The initial value ofF(k,t) is the matrix of the site-site
static structure factors

lecular total correlation function matrices defined by 5p§(k,t)=eik'rf“>, 17
1 e . o ik r®
W 5(K) = N< > e ik e'k‘”ﬁ>' ® Ak =vi, (e . (18
I
The self parts ofF(k,t) and J(k,t) are defined, respec-
a,B (k)= <2 e ik r ek rJB> 9) tively, by

L FS(k,t)=(3p%(k), 8p°(K.1)s, (19

Having assumed a molecule to be rigwd, ;(k) is given by
o (k)= 5K K1) (20)

Waﬁ(k) = 5aﬁ+(1_ 5aB)JO(k|aﬁ')a (10)

where the inner product in the single-particle variable case is
in which jo(x) is the zeroth-order spherical Bessel function, given by
andl ., denotes the “bond” length betweem and S sites.
The initial value ofJ(k,t) for a rigid molecule generically (AS,AS)=(ASTAS). (21)
consists of its translational and rotational contributions,
Note the absence of the factor oNLtompared to Eq(6).
J(k,00=J(k)=J"" k) +J(k), (1) The initial value ofFS(k,t) reads[see Eq(8)]

and can be expressed in terms of inertia parameters such as FS(k,0)=w(k), (22
total mass and principal moment of inertia of the molecule.

Explicit expressions for the elements dfk) for a water whereas that 0f(k,t) is given by

molecule[24,25 and a diatomic moleculgl] can be found

elsewhere. J5(k,0)=J(k). (23
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The appearance di(k), which is common to the collective satisfiesg(x)~1—x? for small x, and diag) represents a

variable cas¢see Eq.(11)], is due to the fact thal(k) is  djagonal matrix. In the present paper, we employ the shape
essentially a single-particle quantity, since the velocities ofynction g(x) = secR(x).

different molecules at the same time are statistically indepen- k _ (k t) in Eq. (28) denotes the slow portion of the

dent. memory kernel which stems from correlated collisional ef-

~ The self parts o8(k,w) andC, (k,) are defined as the fects, whose expression under the mode-coupling theory
time Fourier transforms df*(k,t) andJ°(k,t), respectively.  readg[2]

The unnormalized and normalized frequency moment matri-
ces of S°(k,w) are also defined as in Eq45) and (16): [Keiow(Kot) g

e | do w“SS(k,a»:(—1)“’2[%F5<k,t>}tO. = Gap, | datadwe(@ we@],

2 X (1= £, (A, Fr (k= GOIF (4D F sk )
ik, + 0, (k=g Iwe(a) ]y [we(k—a) ],

(25) X(1=f,p(0,0)f\(k=0q,t))

XFLp(a,0F )\, (k=0,1)} I (k). (33

1 0
<wE'S>EwE’S[fodw S(k,w)

B. Collective dynamics

The time-evolution equation foF(k,t) is given by the The main assumption and approximations used to derive the

generalized Langevin equati@GLE) [1,2] above mode coupling expression dreto assume that the
. slow decay of the memory kernel at long times is due to the
E(k.t) + () E(K,t +f drK (K t—7)E(K,7)=0, couplings to wave-vector-dependent density modes of the
(kD +(@igFkD 0 K mF7) form 6p, (q) 6p.(p), (ii) to decoupleor factorizg the four-

(26) site correlation functions into two-site ones, diit) to use
) ] the convolution approximation for three-site correlation
where (wj) denotes the normalized second frequency mofynctions[2]. The last approximation for molecular liquids is
ment matrix ofS(k,») defined by Eq(16), and is given by  a generalization of those which have been successful in the
mode-coupling theory for simple liquid42,26,21.

2\ 1,2 -1
(@) =kJI(K) x™ (k). (27 In Eq. (33), [wc(K) ] is defined by
K(k,t) in Eg. (26) is the memory function matriXor
simply called the memory kernelfor which two different [WC(K)]ps= 2 W, (K)C,g(K) (34)
approximation schemes were developed in papers | and Il. In oG Ty v

the present work, we adopt an approximation scheme based
on the mode-coupling theory described in paper II, and writavhere c,4(k) denotes the site-site direct correlation func-

K(k,t) in the form tion, andf ,4(k,t) is an auxiliary function defined by
K(kut):Kfasl(kvt)+Ks|0ml(k1t)- (28) 0
_ Faﬁ(kat)
Ktasi(k,t) denotes the fast portion of the memory kernel fap(kit)= FS sk £’ (35

which is due to the rapidly decaying binary collision contri-

butions(associated with fast collisional eveptand is given o
by [2] ( d g where Fgﬁ(k,t) denotes an element of the following inter-

mediate scattering function matrix:
Kias(k,t) = U(k){diad g(t/ 7,(k))JU (k)K (k,0).
(29) FO(k,t)=exd — 3(wf Ht2w(k). (36)

In this equationn-;z(k)’s denote eigenvalues of the matrix

This auxiliary function is required to guarantee that
7 2(k) defined through y a g

Ksow(k,t) evolves at the order df in the short-time regime

1 discussed in paper Il. Numerical results fetk,t) can be

7 2(k)=— =K (k,00K "1(k,0), (30) obtained self-consistently based on E@H), (28), (29), and
2 (33) (see also Sec. llIB

K (k,0)=(wp)(e?) *—(w}), 31

(k0)=(@ig{wi (@i 3D C. Single-particle dynamics
—K(k,00=(d){?) - (o)) )2, (32 The single-particle counterpart of E(6) is given by

in terms of the normalized frequency momentsS{k, w) ES(k t)+<w2 YES(k,t)+ fthKS(k t—7)FS(k,7)=0

defined in Eq(16), andU(K) is a matrix which diagonalizes ' ks ' 0 ’ ' ’

7 2(k). g(x) is a shape function which decays rapidly and (37
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in which 75 4(k)=—3K5(k,0[KS(k,0] 2, (42)

(@) =K2I()W (k). (38)
< ) ) ) ) i andUy(k) is a matrix which diagonalizes; ?(k). The ma-
K®(k,t) is the memory kernel in the single-particle variable jceg appearing in the right-hand side of Hd1) can be

case, and it also consists of its fast and slow portions: expressed, as in EqE31) and(32), as
KS(k,t) = Kgs K 1) + Kgouk,t). (39 . - )
. .. Ks(kvo):<wk,s><wk,s> _<wk,s>! (42)
The fast portion of the memory kerniéP(k,t) is given by
“ . 1 —K(k,0) = (o Ny 9 "= (i N ) ™) (43)
Kfsasl(k't) = Ug( k){qug(t/ TS,a( k))]}US (k)K3(k,0),

40
40 in terms of the normalized frequency moment matrices of

where rgi(k)’s are the eigenvalues of the matrix (k) S°(k,w) defined in Eq.(25). The expression foKg,(K,t)
defined by under the mode-coupling theory red@}

(Ko k)]s ey, | o 2wtk =)y, [wolk=0) 5, (1= Fag(@.0 T (k=0.0)

XF3 (A F 40 (k=0,1) I (K). (44)

Numerical results for the single partick(k,t) can be ob- [1,2], and the second equality of E@7) follows by Laplace
tained based on Eq&37), (39), (40), and(44) (see also Sec. transforming Eg.(37). On the other hand, the first-order

lB). memory kerneM3(k,t) is derived from an operator which
projects any variableX(k) onto the subspace spanned by
D. Velocity correlation functions op>(k):
In this subsection, we derive a time-evolution equation for PX(K) = 605(K) (805(K) . 605(K)) = L(805(K) X (K
site-site velocity correlation functions defined by (k)=3dp(k) (9p(k). ap(k))s ~(9p7(k), X( ))S'(49)
Zap()=(va(0)v (1)), 45 A standard procedure of the projection operator formalism

wherea and g sites belong to the same molecyl&hat is, leads to[10-12

Z,5(t) is a single-particle quantity/lt is obvious in view of : . : _
aB S — S S 1
Eq. (20) thatZ,4(t) is also given by M>(k,t) = (dp>(k), expli QL) dp™(K))sw™ (k)
=Kk2(jS(k),expi QL)jS(k k), 50
Zos(0) = lim 32 5k ). (46) (°(k), expi QLY > (k))sw™(k),  (50)

k=0 where 9=1-"P, and in the second equality we used the
continuity equation. Since it is exact to replace the anoma-
lous time-propagator ex@@@Lt) by the conventional one,
exp(Lt), in thek—O0 limit [12] one finds[see Eq(20)]

To obtain the equation foZ,4(t), we start from the
continued-fraction representatighbeing the unit matrix

FS(k, 2w X(k)= —[zl + MS(k,2)]~*

lim M3(k,t)=k23%(k,t)w~ (k). (51)
= {21 -[2+R(k,2)] Nl 9} L, k=0
(47) From Eq. (47), the Laplace transform of the time-

evolution equation foMS(k,t) reads
where the Laplace transform &f(k,t) is defined by
MS(k,2)= ~[z1 +K5(k,2)] X esf o), (52)

s —i iztes

Fk2)=i Jo dte”F(kt)  (Imz>0). (48) where one should notice tth(k,O)=<wﬁ’S). Using Egs.
(38), (46), and(51), this equation can be rearranged into the
MS(k,z) and KS(k,z), respectively, are the Laplace trans- Laplace transformed equation fa@(t):
forms of the first- and second-order memory function matri- ~ 5
ces ofFS(k,t). We notice that the second-order memory ker- Z(z)=—[zI+K%(2)]"*Z(0), (53
nel K3(k,t) is defined from an operator which projects any
variable onto the subspace spanned &(k) and j3(k) whereKS(z) denotes the Laplace transform of
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K3(t)=Ilim K3(k,t).
k—0

(54)
Laplace inverting Eq(593) finally yields the GLE forZ(t):

Z(t)=—f;dTKs(t—T)Z(T), (55)

which is a direct generalization of the well-known expres-
sion for simple liquid§10-12. Thus, the site-site velocity
correlation functions can be obtained based on the know
edge of the memory kernek 3(k,t).

E. Diffusion coefficients

We next investigate diffusion coefficients of molecular
liquids. In contrast to the monatomic liquid case, diffusion
coefficients consist not only of the translational contribution
but also of the rotational one.

SONG-HO CHONG AND FUMIO HIRATA
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D(k)=sz:dt<vz(0)vz(t)). (62)

In the case of molecular liquids, the rotational motion as
well as the translational one contributes gk), and the
resulting D(k) reflects both kinds of motions. As will be
discussed in Sec. IV C, the translational and rotational con-
tributions can be extracted by diagonalizing the mair{x).

In the present paper, we consider a liquid consisting of di-

|§1tomic moleculegsee Sec. IV A andD(k) is given by a

2X 2 matrix. One therefore obtains two eigenvalues by di-
agonalizing D(k). An eigenvalue ofD(k) related to the
translational motion should vary &£ in the smallk regime
[see Eq.(62)], whereas that related to the rotational motion
should remain finite in thé&—0 limit [11]. Thus, if we de-
note the translational and rotational diffusion coefficients as
DT andDR, respectively, one can expect the eigenvalues of
D(k) [D(k)g] to behave as

To this end, let us consider the overdamped limit of Eq.

(37). The overdamped limit is achieved by neglecting the

inertia term F5(k,t), and by invoking the Markovian ap-
proximation for the memory kerngR8]; the resultant ex-
pression reads

(@} JF(k, D)+ &R F(k,1) =0, (56)
where the friction matrix¢(k) is defined by
g(k):f:dtKS(k,t). 57)

By noting Eq.(22), the solution to Eq(56) is easily found to
be

FS(k,t) =exp — & X(k)(wf HtIw(k) =exfd — D(K)t]w(k),
(58

D(k)e—k?D",DR (as k—0+). (63

We will see later that the behavior represented by(E§). is
indeed observed in our model liquid, and further discussion
concerning the diffusion coefficients will be made in Sec.
IV C. Finally, it should be noted that, although (k) is
singular in thek— 0 limit [see Eq(10)], Eq. (61) as a whole

is not singular owing to the presence of the fadtgrand the

k—0 limit of D(k) is well defined.

Ill. COMPUTATIONAL DETAILS
A. Treatment of the fast portion of the memory kernels

Formal expressions for the fast portion of the memory
kernels are given in Eq$29) and(40) for the collective and
single-particle variable cases, respectively, for which fre-
guency moment matrices &k,w) and S°(k,w) up to the
sixth order are required. For the liquid model we consider in

where, in the second equality, we have defined the waveye present papesee Sec. IV A however, explicit expres-

vector-dependent diffusion-coefficient matrix
D(k) =& *(k)(eg o).

A more useful and physically clearer expressionigk)

(59

can be obtained in terms of the velocity correlation functions

as follows. By taking the—0 limit of Eq. (52), one finds
[see Eq(48)]

D(k)= f:dt MS(K,t). (60)

Using Eq.(5), it follows, in the smallk region, that

D(k)=k2fmdtJS(k,t)W’1(k) (as k—0+). (61
0

In view of Eq. (46), this equation essentially expresses the

diffusion-coefficient matrix as the time integral of the site-
site velocity correlation functions. Thus, E@1) can be re-

sions were derived in paper | for frequency moment matrices
only up to the fourth order. It is of course possible to obtain
the sixth-order frequency moment matrices by the same pro-
cedure as adopted in paper I, but the task is too demanding.
Alternatively, we shall proceed as followidor brevity,
only the argument for the fast portion of the collective
K (k,t) will be presented.In paper I, the relaxation times for
memory kernels are obtained by extending the procedure
proposed by Lovesey and co-work¢&9] to molecular flu-

ids, which only requires the knowledge of the frequency mo-
ment matrices up to the fourth order:

7, M (K) = VA 4(K),

where A (k)'s denote eigenvalues of the matri(k) de-
fined by

(64)

A(K)=(we){ o) (o), (65)

and ¢, is a constant to be determined by requiring that the

garded as a generalization of the well-known Green-Kubasymptotic form ofrgl(k) (e.g., in thek— oo limit) satisfy a

formula for the translational diffusion coefficient of simple
liquids, which in our notation reads

certain property. Since the relaxation times in Egg) are
defined in terms of the lower-order frequency moment ma-
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trices, which gauge the behavior of the relevant dynamical IV. RESULTS AND DISCUSSION
processes in the short-time regifisee Eqs(15) and(16)], it
will be reasonable to expect that, with a certain choicé gof
the relaxation times in Eq64) will be of the same order in In this paper, we consider the same liquid model as paper
magnitude as those determined from E2f). Indeed, in the | This liquid consists of rigid diatomic molecules depicted in
case of simple liquids, this expectation is rather satisfactoryig. 1, with constituent atom#\ and B of massesmy

with a choice of¢,=/3/2 [12]. Assuming this also to be =36 gmol'* and mg=4 gmol' separated from each
valid in the case of molecular fluids, we approximate the fasbther by a fixed distance dfyg=2.0 A. AtomsA and B
portion of the memory kernel in Eq(29 with g(x) carry partial chargegy= —0.2% andgg= + 0.25%, respec-

A. System description and static structure factors

=secl(x) as tively, and the resultant dipole moment is 2.4 D. The
Lennard-Jones parameters a@,=4.0 A and ep/kg
K ast K,1) = U, (k){diad secB(t/ 7, (k))}U; 1 (k) K (k,0), =200 K for atomA, andog=2.0 A andeg/kg=100 K

(66) for atomB. It should be remembered throughout this section
that atomA is larger and heavier than atoBr The number
where 1f,(k) is determined from Eq(64) with ¢,=+3/2,  density is 0.012 molecules &, and the temperature is 250
and U, (k) is a matrix which diagonalizeA(k). A similar K.
construction for the fast portion ok3(k,t) will also be To see a consequence of the inclusion of a slow contribu-
adopted. Obviously, however, it remains to be done in thdion in the memory kernels representing the correlated colli-
future to improve the treatment of the fast portion of thesional effects, we have carried out two sets of calculations.
memory kernels. The first set of calculations was performed by letting
K(k,t) = Kas((k,t) andK3(k,t) =K{s(k,t) (i.e., the memory
B. Numerical procedure kernels consist of the fast portion onlyand the results so
] ] ] obtained will be referred to as FAST results. Another set of
A numerical solution ofF(k,t) can be obtained by an caiculations have been done by incorporating the slow por-
|terat|v§ procedure as follows. Suppose that we haveithe  tign in the memory kernels as well, Eq28) and (39), and
approximated memory kern& (™ (k,t). Then, thenth ap-  the results based on this set of calculations will be called
proximated=" (k,t) is determined via E26). When doing  FULL results. It is then possible to deduce the consequence
this, it is more conventional to work in the frequency domainef the inclusion of the slow portion in the memory kernels by
and then to go back to the time domain. From E2§), with  comparing FAST and FULL results. FAST and FULL results
Egs. (33) and (66), one obtains ther(+ 1)th approximated together will also be referred to as the theoretical results.

memory kerneK ("*1)(k,t) in terms of F("(k,t). This pro- To test the accuracy of our theory, we have also carried
cedure is continued until a certain convergence criterion igut a molecular dynamiogdD) simulation of a system com-
satisfied, which in the present paper is chosen to be posed of 216 molecules confined in a cubic box of length

M M, 112 L=26.207 A at [tgg] c_t;_ﬁse'n thermodynamic ploint usinlg the

(n+1) _en 2 programIMPACT . The interaction potential was calcu-
kizl 11.21 Kap 7(ki 1)) =Kok 1)}/ (MMy) lated with periodic boundary conditions and truncatet/at
The temperature was controlled according to Berendsen
<1078, (67)
Z
for all pairs of sites, wherd; andt; denote spatialin k
space and temporal grid numbers used in the numerical cal-
culation, respectively, anidl, andM, are the total number of
grids.
We choose the initial memory kernel to be given by
.- - - A - - = z=d
KOk, t) =Kiasf K, t). (68) C A A
Thus the slow portion of the memory kernel is gradually a4
incorporated through the iteration procedure. 1 o v
A numerical solution of(k,t) can be obtained in a simi- AB

lar fashion. Notice that it is required to solve the equations
for F(k,t) andF5(k,t) simultaneouslysince the former en- dg
ters the equation for the latter through E¢4), while the
latter appears in the equation for the former through the aux- = ---- @ ————— z= - dB

iliary function[Eq. (35)]. Having obtained converged results
for F(k,t), F°(k,t) and their memory kernels, velocity cor- g, 1. Schematic representation of a diatomic molecule, con-
relation functions and the diffusion-coefficient matrix can begjsting of atomsA andB, in the body-fixed molecular frame where
calculated from Eqgs(55) and (59). The site-site structure the origin is taken to be the center of mass andzlais is along
factors and direct correlation functions, which are required ashe principal axis of the molecule, andzg denote thez coordi-
input in our theory for dynamics, are obtained from ex-RISMnates of atom# andB, respectively, andly the bond length of the
integral equation theor22,23. molecule.
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5 ‘ ‘ T define the second one in terms of the second moment of the
20 A-A . ; .
i ] site-site static structure factors by
1.0
x"(0)=xan(0)+Xgg(0) —2xa5(0), (70)
0.0
T with
2.0 A-B
2 0 , Xap(0)=lim d2y,,4(k)/dK. (71
= ’ k—0
0.0 m . . . .
‘ : ; x"(0) is related to the dielectric constaat of the fluid
2.0 B-B [34,35, and for our model liquid, it holds that
1.0 \v//\vﬁ—%ww 1 1
] "0)=-——=|1——]. (72
00 = ] X 27Bpa €

00 10 20 30 40 50 60 B. Longitudinal current spectra

A-1 . . . . .
k[A7] In this subsection, we study collective density fluctuations

FIG. 2. The site-site static structure factors of the diatomic mol-IN the molecular fluid on the basis of the GLEq. (26)]. As.
ecule, defined in Eq(7). Solid lines denote the results calculated ' OUr earlier study in paper I, this will be done by analyzing

from ex-RISM, while circles represent MD results. The dashedth€ longitudinal current specti@, (k, ) rather than the dy-
lines are to guide the eyes. namic structure factor$S(k,w). Since the fluctuations in

density are intimately related to those in the longitudinal
current due to the continuity equatipgq. (3)], the physical

et al’s “coupling to a heat bath” metho@30]. These tech- . ; i . > .
nical aspects of the simulation may be too primitive to m(,J\kemformatlon contained in these two quantities are essentially

the simulation results conclusive. However, we believe tha{hg_salme{see tEq'(Mt)]’ ?‘”f‘hthe p;ﬁ‘k p_osmons |ntthe”Iork1)g|-
the qualitative nature of the simulation results will not be udinat current spectra in the smailregion can naturally be

changed if we employ more sophisticated techniques for thgssigned to collective excitation m(_)des in the fLaa. .
simulation such as the Ewald sum and the Ntssmostat According to Eq.(26), the collective density fluctuations

[31]. The simulation consists of 200000 steps, with a time?r® characterized by two basic quanties;) andK (k,t). If

step of 1.0¢10" % s. The wave vectck for time-correlation W€ Neglect the lattefthe nondamping approximatiprthere
functions and their spectra is chosen to be of the ferm Would be resonances at frequencies determ'ned«bi_»,
=2m/L(n,0,0) withn=1, . ..,10, and the average over the Which depends on the inertia parameters contained(k)
three independent components is performed in order to imWhose explicit expression was presented in papantl on
prove the statistics. The minimum accessible wave vectofn€ Static structure factors of the fiidee Eq.(27)].

from MD simulation isky,,=0.2398 A. The results ob- Detailed analysis of i) of the liquid under study was
tained from the simulation will be called MD results. To carried out in paper | based on the matrix-diagonalized pro-
facilitate the comparison, FAST and FULL results will also cedure. It was shown that there are two different eigenmodes

be reported at those wave vectors where MD results ar# this liquid which are collective in the smailregion: the
available. acoustic and optical modes, which arise essentially from the
Figure 2 gives the site-site static structure factors calcutranslational and rotationalibrationa) motions of constitu-
lated from ex-RISM(solid line9 and from MD simulation €nt molecules(Equivalently, it can be said that these two
(circles. It is seen from the figure that ex-RISM results aremodes originate from the mass-density and charge-density
quantitatively in good agreement with MD results, except forfluctuations of molecules, respectivelyrheir resonance fre-
the peak height ofaa(k) [32]. Thus, the discrepancy, if duencies within the nondamping approximation in the
found, between our theoretical results and MD results to be~0 limit are given by[1]
presented below can be attributed to a large extent to the

approximations made in our theory for dynamics, which are w2 (k—0)= KT K2 (73)
summarized below Eq33) and Sec. Il A. ace Mx(0)
For later convenience, we define here two quantities in

terms of the site-site static structure factors which turn out to ) akgT

characterize collective excitations in molecular liquids in the “’opti(kﬁo):mha, (74)

small wave-vector regimésee below. The first one is de-

fined by whereM andl are the total mass and the principal moment of

inertia of the molecule, respectively. It is important to notice

X(0)=xaa(0)=xas(0) = xs(0). 69 hat wopi(k) does not vanish in th&—0 limit. (The term

“optical” comes from this fact. Thus, the analysis ofw?)
where we have noticed that all the site-site structure factorseveals the existence of two distinct resonances in the collec-
coincide in thek— 0 limit [33]. It is well known thaty(0) is  tive density fluctuations, the lower-frequency acoustic mode
related to the isothermal compressibility of the fluid. Weand the higher-frequency optical one.
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FIG. 3. Normalized memory functions of atofg K 4a(k,t), for FIG. 5. The longitudinal current spectra of atémC_ aa(k, ),

k=2mn/L with n=1, . . .,10. Solid and dashed lines denote FAST @S & function ofw for k=2an/L with n=1, .. .,10, in arbitrary
and FULL results, respectively. units. Solid and dashed lines denote FAST and FULL results, re-

spectively, and circles represent MD results. These results are

These resonances determined qy?) are shifted and SC/ed and shifted appropriatelsee the text

damped by the memory kernKl(k,t). Figures 3 and 4 re- )
port the theoretical results fdf a(k,t) and Kgg(k,t), re- co_mpared tKgg(k,t). These features are rea_ls_onable consid-
spectively. In these figures, FAST and FULL results are de€Mng that the larger atorA suffers more coII|S|on_aI effects
noted as dashed and solid lines, respectively, and the slofPmpared to the smaller atoB and that the heavier atofk
portion of the memory functions shows up as the differencdS primarily responsible for the slower translational motion
of them. of the molecule, whereas the faster rotatiofuallibrationa)
The first noteworthy features from Figs. 3 and 4 are thafotion mainly originates from the motion of the lighter atom
the slow contribution inKaa(k,t) is larger than that in B. Another feature we found from a visual inspection of

Kag(k,t), and that the overall decay #f,a(k,t) is slower figures of the memory kernel in the larger wave vectoist
shown) is that the contribution from the slow portion de-

L creases as the wave vector is increased. This can be under-
n=>5 n=10 stood by noting that the dynamics is more determined by
short-duration events in the lardgeregime(i.e., in the short-
distance sca)e

Now let us analyze the theoretical results for the longitu-
dinal current spectra obtained by solving the GIHg. (26)],
that incorporates the damping effect from the memory ker-
nel. The longitudinal current spectra for atomAsand B,
n=8 C_ an(kw) andC, gg(kw), are presented in Figs. 5 and 6,
respectively. In these figures, FAST and FULL results are
denoted as dashed and solid lines, respectively, and their
intensities are scaled by the same factor such that the areas

n=2 \¥ n=7 under FAST and FULL results are equal at each wave vector.
0 0.4

10 |

0.5

1.0

0.5

1.0

0.5

KBB (k,t)

1.0

0.5 Two different excitation peaks can be observed from Figs.

5 and 6 which are predicted from the analysigaf), and
n=6 are damped due to the presence Kofk,t). The lower-
frequency peaks are those of the acoustic mode, which show
up mainly inC, aa(k,w), since the larger and heavier atom
A is primarily responsible for the translational motion of the
0.8 molecule. The lower-frequency peaks are also observable in
t [ps] Fig. 6 at small wave vector@specially an=1) since, of
course, atonB also participates in the translational motion of
FIG. 4. Normalized memory functions of atoBy Kgg(k,t), for ~ the molecule. HoweverC, gg(k,») is dominated by the
k=2mn/L with n=1, .. .,10. Solid and dashed lines denote FAST contribution by the contribution from the higher-frequency
and FULL results, respectively. optical mode since the smaller and lighter atBns mainly

10

0.5

0.0 :
0 0.4 0.8
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o N, 0 ‘ ‘
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1.0 % n=1 &7, n=6
S < k[A)
0.5
7 e ) S N FIG. 7. The dispersion relation of tfi@) acoustic andb) optical
00 0 20 0 0 20 40 modes as evaluated from the peak positions in the longitudinal cur-
) rent spectra. Solid and dashed lines denote FAST and FULL results,
o [ps] respectively, and circles represent MD results.

FIG. 6. The longitudinal current spectra of at@nCy gg(k,@),  cilitate the comparison with the theoretical results, MD re-
as a function ofw for k=2mn/L with n=1,...,10, in arbitrary  gylts are scaled vertically and shifted horizontally such that
units. Solid and dashed lines denote FAST and FULL results, rethejr peak positions and intensities coincide with FULL re-
spectively, and circles represent MD results. These results arg|ts. The actual peak frequencies obtained from MD simu-

scaled and shifted appropriatefsee the text lations are separately reported as circles in Figs) @nd
7(b).
responsible for the orientational motion of the molecule. Concerning the spectral width of the acoustic-mode exci-

Let us investigate how the inclusion of the slow contribu-tation profiles presented in Fig. 5, FULL results show better
tion in the memory kernel affects the excitation profiles byagreement with MD results, and the inclusion of the slow
comparing FAST and FULL results. From the results in Fig.contribution in the memory kernel actually improves the the-
3, one expects a non-negligible effect from the slow contri-oretical results. However, the theoretical results near the
bution on the acoustic-mode excitation profiles, especially irpeak position ofyaa(k) (i.e., n=6,7, and 8 deviate rather
the smallk region. We see from Fig. 5 that FULL results significantly from MD results. The disagreement is partly
(solid lineg differ from the corresponding FAST results due to the equilibrium structure functions used in our theo-
(dashed linesespecially in the lower-frequency parts of the retical calculations: as we have seen in Fig. 2, the peak
acoustic-mode resonances: the difference reflects the effebeight of yaa(k) obtained by ex-RISM is not in good agree-
of the inclusion of the slow portion in the memory kernel. ment with that obtained from MD simulation. This is also
This trend, however, decreases as the wave vector is imeflected in the acoustic-mode dispersion relation mear
creased, since the dynamics in the lakgeegime is mainly  presented in Fig. (). Another reason for the disagreement
accounted for by the short-duration events. On the otheseems to lie in our approximate treatment of the fast portion
hand, FAST and FULL results for the optical-mode excita-of the memory kernelsee Sec. Il A, since the disagreement
tion profiles presented in Fig. 6 do not differ so significantly.is significant at the level of FAST results.

This feature is expected from the results in Fig. 4, and by The theoretical results for the optical-mode excitation
noting that the optical mode originates from the faster proprofiles are in fair agreement with MD results in the snkall-
cesseglibrational motiong in the liquid. region, but the agreement becomes worse at larger wave vec-

The wave-vector dependence of low and high peak fretors. We presume that a primary reason for the discrepancy
quencies(dispersion relation of the longitudinal current also lies in our approximate treatment of the fast portion of
spectra are shown in Figs(aJ and 7b), respectively. In the memory kernelsee Sec. Il A, since the motion of atom
these figures, FAST and FULL results are again denoted bB is mainly responsible for the optical mode and since
dashed and solid lines, respectively. The dispersion behavidtzg(k,t) is largely determined by its fast portidsee Fig.
of the acoustic and optical modes shows the same trend &3. Thus it is clear that Eq66) may be a rather rough ap-
we discussed in paper |. It is seen from Fig&)7and 1b) proximation for the fast portion of the memory kernel, and
that the peak frequencies are rather well reproduced even liie improvement of the treatment should be investigated in
taking into account only the fast portion of the memory ker-the future.
nel. Thus the effect of the inclusion of the slow contribution  As can be seen from Figs(&J and 7b), compared to MD
in the memory kernel mainly shows up in the spectral widthresults, our theoretical results reproduce the correct wave-
of the lower-frequency acoustic mode. vector dependence of the peak frequencies both of the acous-

Finally, we compare the theoretical results with MD re-tic and optical modes, although they are not in quantitative
sults. The longitudinal current spectra obtained from the MDagreement. It is also seen from these figures that the inclu-
simulation are presented as circles in Figs. 5 and 6. To fasion of the slow contribution in the memory kernel seems to
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FIG. 8. Normalized memory functions of aton® and B, FIG. 9. Normalized velocity autocorrelation functions of atoms
Kaa(t) andKpgg(t), for the velocity correlation functions. Solid and A andB, Zxa(t) andZgg(t). Solid and dashed lines denote FAST
dashed lines denote FAST and FULL results, respectively. and FULL results, respectively, and circles represent MD results.
improve the theoretical results toward MD results. trum for atomA are not in good agreement with MD results,

The MD result for the optical mode at the lowest wave even with the inclusion of the slow portion of the memory
vector (i.e., n=1) in Fig. 7b) is seen to behave differently kernel. On the other hand, the theoretical results for aom
from the theoretical results. However, we have confirmedare in fair agreement with MD results, and that the inclusion
that the peak frequency of the optical mode at the lowesbf the slow contribution in the memory kernel is seen to
wave vector depends largely on the cutoff length used in MOmprove the theoretical results.
simulation for the interaction potential, and the exceptional We next discuss the diffusion coefficients of our model
behavior seems to be an artifact caused by the cutoff. Thibquid. To this end, we take the same approach as that em-
indirectly indicates the collective nature of the optical-modeployed in paper | in analyzing w;), i.e., the matrix-
resonances in the smadlregion.(The collective and single- diagonalization procedure.
particle nature of the excitation modes were already dis- Thek-dependent diffusion-coefficient matrix is calculated
cussed in paper |, and it is possible to discuss the samigom Eg.(59), and its eigenvalues are reported in Fig(al1
matter based on the present work. We have verified that th@=or brevity, only FULL results are reported in Fig. 11.
conclusion does not change from paper |, and such a discusigure 11a) clearly shows that there are two eigenvalues of
sion will be omitted here for brevity. D(k) which behave in the smak-regime as we anticipated

in Sec. Il E[see Eq(63)]: one of the eigenvalues behaves as

C. Velocity autocorrelation functions and diffusion coefficients ~ k?D" in the smallk regime[solid line in Fig. 11a)], while

. . . . the other converges into a finite valug®) in thek—0 limit
We next turn our attention to single-particle dynamics.

Specifically, here we analyze velocity autocorrelation func-
tions and diffusion coefficients of the molecular liquid. LO roopg
Figure 8 reports the normalized memory functions for the |
velocity correlation functionK(t) defined in Eq.(55), for
atomsA and B: solid and dashed lines denote FAST and 0.5
FULL results, respectively. It is seen by comparing FAST
and FULL results that the contribution from the slow portion
is larger forKa(t) compared tdgg(t), which is the same
trend as we have observed in Figs. 3 and 4.
The normalized velocity autocorrelation functions are pre-
sented in Fig. 9 which is obtained by solving E§5), and
their spectra are reported in Fig. 10, along with MD results.
In these figures, again, solid and dashed lines denote FAST
and FULL results, respectively, and circles represent MD
results. In Fig. 10, FAST and FULL results are scaled by the
same factor such that the areas under them are equal, while
MD results are scaled so that their peak intensities coincide
with those of FULL results(No horizontal shift of MD spec- FIG. 10. Spectra of the velocity autocorrelation functions of
tra is attempted in Fig. 1p. atomsA andB, Zxa(w) andZgg(w). Solid and dashed lines denote
From Figs. 9 and 10, one sees that, although the overafasT and FULL results, respectively, and circles represent MD
features are well reproduced by our theory, the theoreticalesults. These results are scaledt not shifted appropriately(see
results for the velocity autocorrelation function and its specthe texj.

Z(w)

o [ps]
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4.0 ‘ : TABLE I. The theoretical and MD results for the translational
(@) DX branch and rotational diffusion coefficients. The theoretical results are ob-
- 3.0 <] tained by taking th&— 0 limit of the eigenvalues db(k) (see the
% 20 L text).
Q0 T A e FAST FULL MD
0.0 / DT (A2ps ™) 0.367 0.091 0.501
L0 _(bi/_XA\ DR(ps Y 1.325 0.712 0.744
0.5 { o 1
L e X . .
0.0 : R sented in paper)l It should be also noted that the magnitude
© ‘ T x of xg(k) is larger than that ok,(k), indicating that the
L T 7 lighter atomB is more responsible in determinifX. These
05 r < facts confirm thaDR indeed reflects the rotational motion of
0.0 __///A/ the molecule.
‘ Numerical FAST and FULL results fob™ and DR are
0.0 0.5 1.0 15 2.0 reported in Table I. FULL results for diffusion coefficients

are small compared to FAST results, since the inclusion of
the slow contribution in the memory kernel increases the

FIG. 11. (a) Diffusion coefficients as evaluated by diagonalizing translational as well as rotational frictions “felt” by the
the diffusion-coefficient matriXD(k). Only FULL results are re- tagged moleculgsee Eq(57)].
ported. Solid and dashed lines denkt®T andDR branches of the MD results forDT and DR are also calculated from tra-
eigenvalues ofD(k), respectively.(b) x, (solid line and xz  jectories using the standard formulds]
(dashed lingdefined in the text corresponding to tk& " branch.
(¢) x5 (solid line) and xg (dashed ling corresponding to th®R
branch.x, andxg are normalized such thaf +x3=1.

k[AY

o™=} [ "dxve(0) ve(o), (79

[dashed line in Fig. 1&)]. As mentioned in Sec. IIE, the

former can be regarded as the translational diffusion coeffi-

cient, and the latter the rotational diffusion coefficient. 2

To further confirm thatD™ and DR actually reflect the DR:%J dt{e(0) - w(t)), (77

translational and rotational motions of the molecule, respec- 0

tively, we investigate how the motion of each atom in they,here\C(t) ande(t) denote the center-of-mass velocity and

molecule contributes t®T andD®. The contributions from 4 angular velocity of a molecule, respectively, and are

each atom to the translational and rotational diffusion Coef'given in Table I. It is seen from thé table that tr’le FULL

ficients can be extracted in the following way. Diagonalizing jas it for DR is in good agreement with the corresponding

the matrixD(k) corresponds to changing the description of \,n result, while that foDT is not so good. This is in accord

the system from one in terms of the densities of each atomh our observation in Figs. 9 and 10, since the velocity

pa(k) and dpg(k) to one in terms of their linear combina- 5yocorrelation function of the lighter atos reflects the

tion, orientational motion of the molecule, for which the theoret-
XA (K) 8pa(K) +Xg(K) Spg(K), (75) ircez;IUIrtisults are found to be in good agreement with MD

wherex,(k) andxg(k) are the components of the eigenvec-
tor corresponding to each eigenvaluelyk).

Figure 11b) reportsxa(k) and xg(k) corresponding to In the present paper, numerical results were presented for
the k?D" branch, normalized such thaf(k)+x3(k)=1. It  |ongitudinal current spectra, velocity autocorrelation func-
is seen from the figure thats(k)=xg(k) holds in thek tions, and diffusion coefficients of a model diatomic liquid
—0 limit. This reveals that both atoms in the molecule using the theory developed in paper Il. The theory is based
equally contribute tdT, and thus verifies thdd " originates  on the interaction-site model for molecular liquids, the
from the center-of-mass translational motion of the mol-projection-operator formalism of Zwanzig and Mori, and the
ecule. mode-coupling theory. By comparing FAST and FULL re-

Figure 11c) presentx,(k) andxg(k) corresponding to sults, the effect of the inclusion of the slow contribution in
the DR branch. Note from the figure thag(k) andxg(k) in  the memory kernels on the aforementioned dynamical quan-
the k—0 limit are opposite in sign; thus atoms and B tities was discussed. The molecular dynamics simulation of
contribute toDR in an out-of-phase fashion in terms of Eq. the same system was also performed to test the accuracy of
(75). (Suppose that a molecule in Fig. 1 rotates aroundkthe the theory, and the theoretical results were found to be in fair
axis. Then the component coordinate of atof decreases agreement with the simulation results.
while that of atomB increases. The out-of-phase fashion Finally, one should note the following important feature
mentioned above implies this kind of motion, i.e., rotation.which our theory for dynamics based on the interaction-site
Also see the discussion concerning the matfi) pre- model(ISM) provides. That is, although our theory based on

V. CONCLUDING REMARKS
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the ISM stands on the atomic viewpoimhore precisely, the This feature in our theory is in contrast to another method
correlated-atom viewpoint due to the presence of chemicabf describing the dynamics of polyatomic fluids, i.e., the one
bondg, and the resulting dynamical correlation functions arebased on rotational invariant expansidi®8,37,3§ which

the site-site ones, it is possible to extract such physics ofan deal explicitly with reorientational motion as well as
molecular liquids as the translational and rotational mOtion%enter-of-mass_motion-dependent guantities. However, the
from the site-site correlation functions. For instance, the sitemethod based on rotational invariant expansions becomes
site longitudinal current spectra can be reasonably inter'rncreasingly difficult as the asphericity of a molecule be-
preted in terms of the acoustic and optical modes arisinggomes larger, since the convergence of the invariant expan-
respectively, from the translational and rotational motions Ofkjgn is slow. Our theory based on the ISM, on the other hand,
the molecules. The latter viewpoint was employed in Refgoes not suffer from this problem, and is superior to the
[36] in the problem of the ionic friction in a polar liquid, and other in applying to a system consisting of complicated mol-
it has been demonstrated that contributions from the translascyles. Thus our theory is not only capable of treating the
tional and rotational motions of surrounding solvent mol-general class of polyatomic fluids without too much diffi-
ecules on an ionic friction can be separately discussed byyty, but can also be used to extract the important physics of

taking appropriate linear combinations of the site-site spacemolecular liquids, and paves a way toward a theory for dy-
time density correlation functions. As another example, asamical processes in polyatomic fluids.

showed in Sec. IV C, although a bare application of &§)

to a polyatomic fluid results in a diffusion-coefficient matrix
whose elements represent the correlated atomic diffusion, it
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