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Time-correlation functions in molecular liquids studied by the mode-coupling theory based
on the interaction-site model

Song-Ho Chong1 and Fumio Hirata2,*
1Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

2Institute for Molecular Science, Myodaiji, Okazaki, Aichi, 444-8585, Japan
~Received 10 June 1998!

Numerical results for longitudinal current spectra, velocity autocorrelation functions, and diffusion coeffi-
cients of a model diatomic liquid are presented using the recently developed theory for dynamics of classical
polyatomic fluids. The theory is based on the interaction-site model for molecular liquids, the projection-
operator formalism, and mode-coupling theory. The effect of the inclusion of a slow contribution in memory
kernels, represented by the mode-coupling expression, on the aforementioned dynamical quantities is dis-
cussed. A molecular dynamics simulation of the same system is also performed to test the accuracy of our
theory, and the theoretical results are found to be in fair agreement with those obtained from the simulation.
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I. INTRODUCTION

In two recent papers@1,2# ~hereafter referred to as pape
I and II, respectively!, we developed a microscopic theo
for the dynamics of polyatomic fluids based on t
projection-operator formalism of Zwanzig and Mori@3–5#,
and on the interaction-site model for molecular liquids@6,7#.
In paper I, an approximation scheme was developed
memory functions appearing in the generalized Lange
equation by assuming an exponential form for the mem
functions, and by extending the method of Lovesey and
workers for monatomic liquids@8,9# to polyatomic fluids.
The resulting theory was applied to calculations of spa
time density correlation functions and longitudinal curre
spectra, and was shown to provide a rather satisfactory
count of the main features of collective excitations in clas
cal molecular liquids.

However, an intense investigation through theoretical,
perimental, and molecular dynamics simulation studies
simple liquids has revealed that the microscopic proces
underlying various time-dependent phenomena canno
fully accounted for by a simplified memory-function a
proach@10–12#. In particular, the assumption that the dec
of the memory functions is ruled by a simple exponenti
type relaxation must be significantly revised in view of t
results of the kinetic framework developed for dense sim
liquids @13–21#. This motivated us to improve the theor
further for the dynamics of polyatomic fluids: this work wa
presented in paper II.

The central idea adopted in paper II was borrowed fr
the works of Sjo¨gren @20,21#, and was to separate th
memory functions into a fast portion arising from rapid
decaying ‘‘binary collision’’ contributions, and a slow po
tion which stems from correlated collisional effects. In pap
II, the fast portion of the memory functions was obtained
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exploiting ‘‘frequency sum rules,’’ and, for the treatment
the slow portion, we developed a mode-coupling theory
molecular liquids based on the interaction-site model.

The resulting theory in paper II provides closed nonline
equations for a self-consistent treatment of density propa
tion in a classical polyatomic fluid. This paper presents n
merical results for longitudinal current spectra, velocity a
tocorrelation functions, and diffusion coefficients of a mod
diatomic liquid based on this theory, and a consequenc
the inclusion of the slow portion in the memory functions
discussed. The site-site static structure factors and direct
relation functions, which are required as input in our theo
for dynamics, are obtained from an integral equation the
conventionally referred to as ex-RISM~the extended version
of the reference interaction-site method! @22,23#. To test the
accuracy of the theory, a molecular dynamics simulation
the same system is also performed, and the theoretical re
are compared with those obtained from the simulation.

II. THEORY

In this section, we briefly outline the theory for dynami
of molecular liquids that is needed in our theoretical calc
lations. For their derivation, we refer to papers I and II.
theory for velocity correlation functions and diffusion coe
ficients of polyatomic fluids is also presented. Througho
this section, we consider a homogeneous and isotropic fl
composed ofN rigid molecules in a volumeV at the inverse
temperatureb51/kBT, and the thermodynamic limit with
densityr5N/V is implied.

A. Basic definitions

We begin with the definition of two basic dynamical var
ablesdr and j . dr and j are row vectors whose componen
are, respectively, a local density and a longitudinal curr
density of atom~site! a at time t in Fourierk space:

dra~k,t ![(
i

eik•r i
a

~ t !, ~1!:
7296 © 1998 The American Physical Society
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j a~k,t ![(
i

v i ,z
a ~ t !eik•r i

a
~ t !, ~2!

where r i
a(t) and v i ,z

a (t) denote the location and thez-
component velocity of atoma in the i th molecular at timet,
respectively, and the wave vectork is chosen such that it is
along thez axis of the space-fixed laboratory frame. Here
ter, the Greek subscripts and superscripts refer to the in
action sites of a molecule, and the Roman letters label
molecules unless specified otherwise. These two dens
satisfy the continuity equation

ḋra~k,t !5 ik j a~k,t !, ~3!

where the dot denotes the time derivative.
The matrices of the site-site intermediate scattering fu

tions and the longitudinal current correlation functions a
defined, respectively, by

F~k,t ![„dr~k!,dr~k,t !…, ~4!

J~k,t ![„j ~k!,j ~k,t !…. ~5!

~The absence of any indication for timet in a dynamical
variable means that the latter is evaluated att50.) Here the
inner product of two row vectors,A1 andA2 , is defined as
the canonical ensemble average

~A1 ,A2![
1

N
^A1

†A2&, ~6!

where A1
† denotes a column vector adjoint toA1 , and the

factor 1/N is a matter of convention.
The initial value ofF(k,t) is the matrix of the site-site

static structure factors

F~k,0![x~k!5w~k!1rh~k!, ~7!

where w(k) and h(k) are the intramolecular and intermo
lecular total correlation function matrices defined by

wab~k![
1

NK (
i

e2 ik•r i
a
eik•r i

bL , ~8!

rhab~k![
1

NK (
i

(
j Þ i

e2 ik•r i
a
eik•r j

bL . ~9!

Having assumed a molecule to be rigid,wab(k) is given by

wab~k!5dab1~12dab! j 0~klab!, ~10!

in which j 0(x) is the zeroth-order spherical Bessel functio
and l ab denotes the ‘‘bond’’ length betweena andb sites.

The initial value ofJ(k,t) for a rigid molecule generically
consists of its translational and rotational contributions,

J~k,0![J~k!5Jtrans~k!1Jrot~k!, ~11!

and can be expressed in terms of inertia parameters suc
total mass and principal moment of inertia of the molecu
Explicit expressions for the elements ofJ(k) for a water
molecule@24,25# and a diatomic molecule@1# can be found
elsewhere.
-
r-
e
es

-
e

,

as
.

The matrices of the site-site dynamic structure factors
the longitudinal current spectra are defined, respectively
the time Fourier transforms of the corresponding tim
correlation function matrices:

S~k,v![E
2`

`

dt eivtF~k,t !, ~12!

CL~k,v![E
2`

`

dt eivtJ~k,t !. ~13!

The continuity equation@Eq. ~3!#, implies that these two ma
trices are connected through the relation

CL~k,v!5
v2

k2 S~k,v!. ~14!

We define here for later convenience the unnormalized
normalizednth frequency moment matrices ofS(k,v):

vk
n[

1

2pE2`

`

dv vnS~k,v!5~21!n/2F dn

dtn
F~k,t !G

t50

,

~15!

^vk
n&[vk

nF 1

2pE2`

`

dv S~k,v!G21

5vk
nx21~k!, ~16!

where we have used Eq.~7! and the inverse relation of Eq
~12!.

We next consider single-particle counterparts. The te
‘‘particle’’ in this paper refers to one molecule as a who
and not to an individual atom which constitutes the m
ecule. Our basic dynamical variables in this case are den
and longitudinal current density of an arbitrarily chos
tagged particle,drs and j s, whose components are give
respectively, by

dra
s ~k,t !5eik•r1

a
~ t !, ~17!

j a
s ~k,t !5v1,z

a ~ t !eik•r1
a

~ t !. ~18!

The self parts ofF(k,t) and J(k,t) are defined, respec
tively, by

Fs~k,t ![„drs~k!,drs~k,t !…s , ~19!

Js~k,t ![„j s~k!,j s~k,t !…s , ~20!

where the inner product in the single-particle variable cas
given by

~A1
s ,A2

s!s[^A1
s†A2

s&. ~21!

Note the absence of the factor of 1/N compared to Eq.~6!.
The initial value ofFs(k,t) reads@see Eq.~8!#

Fs~k,0!5w~k!, ~22!

whereas that ofJs(k,t) is given by

Js~k,0!5J~k!. ~23!
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The appearance ofJ(k), which is common to the collective
variable case@see Eq.~11!#, is due to the fact thatJ(k) is
essentially a single-particle quantity, since the velocities
different molecules at the same time are statistically indep
dent.

The self parts ofS(k,v) andCL(k,v) are defined as the
time Fourier transforms ofFs(k,t) andJs(k,t), respectively.
The unnormalized and normalized frequency moment ma
ces ofSs(k,v) are also defined as in Eqs.~15! and ~16!:

vk,s
n [

1

2pE2`

`

dv vnSs~k,v!5~21!n/2F dn

dtn
Fs~k,t !G

t50

,

~24!

^vk,s
n &[vk,s

n F 1

2pE2`

`

dv Ss~k,v!G21

5vk,s
n w21~k!.

~25!

B. Collective dynamics

The time-evolution equation forF(k,t) is given by the
generalized Langevin equation~GLE! @1,2#

F̈~k,t !1^vk
2&F~k,t !1E

0

t

dt K ~k,t2t!Ḟ~k,t!50,

~26!

where ^vk
2& denotes the normalized second frequency m

ment matrix ofS(k,v) defined by Eq.~16!, and is given by

^vk
2&5k2J~k!x21~k!. ~27!

K (k,t) in Eq. ~26! is the memory function matrix~or
simply called the memory kernel!, for which two different
approximation schemes were developed in papers I and I
the present work, we adopt an approximation scheme ba
on the mode-coupling theory described in paper II, and w
K (k,t) in the form

K ~k,t !5K fast~k,t !1K slow~k,t !. ~28!

K fast(k,t) denotes the fast portion of the memory kern
which is due to the rapidly decaying binary collision cont
butions~associated with fast collisional events!, and is given
by @2#

K fast~k,t !5U~k!$diag@g„t/ta~k!…#%U21~k!K ~k,0!.
~29!

In this equation,ta
22(k)’s denote eigenvalues of the matr

t22(k) defined through

t22~k![2
1

2
K̈ ~k,0!K21~k,0!, ~30!

K ~k,0!5^vk
4&^vk

2&212^vk
2&, ~31!

2K̈ ~k,0!5^vk
6&^vk

2&212~^vk
4&^vk

2&21!2, ~32!

in terms of the normalized frequency moments ofS(k,v)
defined in Eq.~16!, andU(k) is a matrix which diagonalizes
t22(k). g(x) is a shape function which decays rapidly a
f
n-

i-

-

In
ed
e

l

satisfiesg(x)'12x2 for small x, and diag~ ! represents a
diagonal matrix. In the present paper, we employ the sh
function g(x)5sech2(x).

K slow(k,t) in Eq. ~28! denotes the slow portion of th
memory kernel which stems from correlated collisional
fects, whose expression under the mode-coupling the
reads@2#

@Kslow~k,t !#ab

5
r

~2p!3 (
l,m,n

E dq$qz
2@wc~q!#lm@wc~q!#bn

3„12 f mn~q,t ! f lb~k2q,t !…Fmn~q,t !Flb~k2q,t !

1qz~k2qz!@wc~q!#lm@wc~k2q!#bn

3„12 f mb~q,t ! f ln~k2q,t !…

3Fmb~q,t !Fln~k2q,t !%Jal~k!. ~33!

The main assumption and approximations used to derive
above mode coupling expression are~i! to assume that the
slow decay of the memory kernel at long times is due to
couplings to wave-vector-dependent density modes of
form drl(q)drm(p), ~ii ! to decouple~or factorize! the four-
site correlation functions into two-site ones, and~iii ! to use
the convolution approximation for three-site correlati
functions@2#. The last approximation for molecular liquids
a generalization of those which have been successful in
mode-coupling theory for simple liquids@12,26,27#.

In Eq. ~33!, @wc(k)#ab is defined by

@wc~k!#ab[(
g

wag~k!cgb~k!, ~34!

where cab(k) denotes the site-site direct correlation fun
tion, and f ab(k,t) is an auxiliary function defined by

f ab~k,t ![
Fab

0 ~k,t !

Fab
s ~k,t !

, ~35!

whereFab
0 (k,t) denotes an element of the following inte

mediate scattering function matrix:

F0~k,t ![exp@2 1
2 ^vk,s

2 &t2#w~k!. ~36!

This auxiliary function is required to guarantee th
K slow(k,t) evolves at the order oft4 in the short-time regime
discussed in paper II. Numerical results forF(k,t) can be
obtained self-consistently based on Eqs.~26!, ~28!, ~29!, and
~33! ~see also Sec. III B!.

C. Single-particle dynamics

The single-particle counterpart of Eq.~26! is given by

F̈s~k,t !1^vk,s
2 &Fs~k,t !1E

0

t

dt K s~k,t2t!Ḟs~k,t!50,

~37!
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in which

^vk,s
2 &5k2J~k!w21~k!. ~38!

K s(k,t) is the memory kernel in the single-particle variab
case, and it also consists of its fast and slow portions:

K s~k,t !5K fast
s ~k,t !1K slow

s ~k,t !. ~39!

The fast portion of the memory kernelK s(k,t) is given by
@2#

K fast
s ~k,t !5Us~k!$diag@g„t/ts,a~k!…#%Us

21~k!K s~k,0!,
~40!

where ts,a
22(k)’s are the eigenvalues of the matrixts

22(k)
defined by
.

fo

s-
tri
er
ny
ts
22~k![2 1

2 K̈ s~k,0!@K s~k,0!#21, ~41!

andUs(k) is a matrix which diagonalizests
22(k). The ma-

trices appearing in the right-hand side of Eq.~41! can be
expressed, as in Eqs.~31! and ~32!, as

K s~k,0!5^vk,s
4 &^vk,s

2 &212^vk,s
2 &, ~42!

2K̈ s~k,0!5^vk,s
6 &^vk,s

2 &212~^vk,s
4 &^vk,s

2 &21!2 ~43!

in terms of the normalized frequency moment matrices
Ss(k,v) defined in Eq.~25!. The expression forK slow

s (k,t)
under the mode-coupling theory reads@2#
@Kslow
s ~k,t !#ab5

r

~2p!3 (
l,m,n

E dq~k2qz!
2@wc~k2q!#lm@wc~k2q!#bn„12 f lb~q,t ! f mn~k2q,t !…

3Flb
s ~q,t !Fmn~k2q,t !Jal~k!. ~44!
r

by

sm

he
a-

,

-

he
Numerical results for the single particleFs(k,t) can be ob-
tained based on Eqs.~37!, ~39!, ~40!, and~44! ~see also Sec
III B !.

D. Velocity correlation functions

In this subsection, we derive a time-evolution equation
site-site velocity correlation functions defined by

Zab~ t ![^va~0!vb~ t !&, ~45!

wherea andb sites belong to the same molecule.@That is,
Zab(t) is a single-particle quantity.# It is obvious in view of
Eq. ~20! that Zab(t) is also given by

Zab~ t !5 lim
k→0

Jab
s ~k,t !. ~46!

To obtain the equation forZab(t), we start from the
continued-fraction representation~I being the unit matrix!

F̃s~k,z!w21~k!52@zI1M̃ s~k,z!#21

52$zI2@zI1K̃ s~k,z!#21^vk,s
2 &%21,

~47!

where the Laplace transform ofFs(k,t) is defined by

F̃s~k,z![ i E
0

`

dt eiztFs~k,t ! ~ Im z.0!. ~48!

M̃ s(k,z) and K̃ s(k,z), respectively, are the Laplace tran
forms of the first- and second-order memory function ma
ces ofFs(k,t). We notice that the second-order memory k
nel K s(k,t) is defined from an operator which projects a
variable onto the subspace spanned bydrs(k) and j s(k)
r

-
-

@1,2#, and the second equality of Eq.~47! follows by Laplace
transforming Eq.~37!. On the other hand, the first-orde
memory kernelM s(k,t) is derived from an operator which
projects any variableX(k) onto the subspace spanned
drs(k):

PX~k!5drs~k!„drs~k!,drs~k!…s
21

„drs~k!,X~k!…s .
~49!

A standard procedure of the projection operator formali
leads to@10–12#

M s~k,t !5„ḋrs~k!,exp~ iQLt !ḋrs~k!…sw
21~k!

5k2
„j s~k!,exp~ iQLt !j s~k!…sw

21~k!, ~50!

whereQ512P, and in the second equality we used t
continuity equation. Since it is exact to replace the anom
lous time-propagator exp(iQLt) by the conventional one
exp(iLt), in thek→0 limit @12# one finds@see Eq.~20!#

lim
k→0

M s~k,t !5k2Js~k,t !w21~k!. ~51!

From Eq. ~47!, the Laplace transform of the time
evolution equation forM s(k,t) reads

M̃ s~k,z!52@zI1K̃ s~k,z!#21^vk,s
2 &, ~52!

where one should notice thatM2(k,0)5^vk,s
2 &. Using Eqs.

~38!, ~46!, and~51!, this equation can be rearranged into t
Laplace transformed equation forZ(t):

Z̃~z!52@zI1K̃ s~z!#21Z~0!, ~53!

whereK̃ s(z) denotes the Laplace transform of
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K s~ t ![ lim
k→0

K s~k,t !. ~54!

Laplace inverting Eq.~53! finally yields the GLE forZ(t):

Ż~ t !52E
0

t

dt K s~ t2t!Z~t!, ~55!

which is a direct generalization of the well-known expre
sion for simple liquids@10–12#. Thus, the site-site velocity
correlation functions can be obtained based on the kno
edge of the memory kernel,K s(k,t).

E. Diffusion coefficients

We next investigate diffusion coefficients of molecul
liquids. In contrast to the monatomic liquid case, diffusi
coefficients consist not only of the translational contributi
but also of the rotational one.

To this end, let us consider the overdamped limit of E
~37!. The overdamped limit is achieved by neglecting t
inertia term F̈s(k,t), and by invoking the Markovian ap
proximation for the memory kernel@28#; the resultant ex-
pression reads

^vk,s
2 &Fs~k,t !1j~k!Ḟs~k,t !50, ~56!

where the friction matrixj(k) is defined by

j~k!5E
0

`

dt K s~k,t !. ~57!

By noting Eq.~22!, the solution to Eq.~56! is easily found to
be

Fs~k,t !5exp@2j21~k!^vk,s
2 &t#w~k!5exp@2D~k!t#w~k!,

~58!

where, in the second equality, we have defined the wa
vector-dependent diffusion-coefficient matrix

D~k!5j21~k!^vk,s
2 &. ~59!

A more useful and physically clearer expression forD(k)
can be obtained in terms of the velocity correlation functio
as follows. By taking thez→0 limit of Eq. ~52!, one finds
@see Eq.~48!#

D~k!5E
0

`

dt M s~k,t !. ~60!

Using Eq.~51!, it follows, in the small-k region, that

D~k!5k2E
0

`

dt Js~k,t !w21~k! ~as k→01 !. ~61!

In view of Eq. ~46!, this equation essentially expresses t
diffusion-coefficient matrix as the time integral of the sit
site velocity correlation functions. Thus, Eq.~61! can be re-
garded as a generalization of the well-known Green-Ku
formula for the translational diffusion coefficient of simp
liquids, which in our notation reads
-

l-

.

e-

s

e

o

D~k!5k2E
0

`

dt^vz~0!vz~ t !&. ~62!

In the case of molecular liquids, the rotational motion
well as the translational one contributes toD(k), and the
resulting D(k) reflects both kinds of motions. As will be
discussed in Sec. IV C, the translational and rotational c
tributions can be extracted by diagonalizing the matrixD(k).
In the present paper, we consider a liquid consisting of
atomic molecules~see Sec. IV A!, and D(k) is given by a
232 matrix. One therefore obtains two eigenvalues by
agonalizing D(k). An eigenvalue ofD(k) related to the
translational motion should vary ask2 in the small-k regime
@see Eq.~62!#, whereas that related to the rotational moti
should remain finite in thek→0 limit @11#. Thus, if we de-
note the translational and rotational diffusion coefficients
DT andDR, respectively, one can expect the eigenvalues
D(k) @D(k)E# to behave as

D~k!E→k2DT,DR ~as k→01 !. ~63!

We will see later that the behavior represented by Eq.~63! is
indeed observed in our model liquid, and further discuss
concerning the diffusion coefficients will be made in Se
IV C. Finally, it should be noted that, althoughw21(k) is
singular in thek→0 limit @see Eq.~10!#, Eq. ~61! as a whole
is not singular owing to the presence of the factork2, and the
k→0 limit of D(k) is well defined.

III. COMPUTATIONAL DETAILS

A. Treatment of the fast portion of the memory kernels

Formal expressions for the fast portion of the memo
kernels are given in Eqs.~29! and~40! for the collective and
single-particle variable cases, respectively, for which f
quency moment matrices ofS(k,v) and Ss(k,v) up to the
sixth order are required. For the liquid model we consider
the present paper~see Sec. IV A!, however, explicit expres-
sions were derived in paper I for frequency moment matri
only up to the fourth order. It is of course possible to obta
the sixth-order frequency moment matrices by the same
cedure as adopted in paper I, but the task is too demand

Alternatively, we shall proceed as follows.@For brevity,
only the argument for the fast portion of the collectiv
K (k,t) will be presented.# In paper I, the relaxation times fo
memory kernels are obtained by extending the proced
proposed by Lovesey and co-workers@8,9# to molecular flu-
ids, which only requires the knowledge of the frequency m
ment matrices up to the fourth order:

ta
21~k!5jaADa~k!, ~64!

where Da(k)’s denote eigenvalues of the matrixD(k) de-
fined by

D~k![^vk
4&^vk

2&212^vk
2&, ~65!

and ja is a constant to be determined by requiring that
asymptotic form ofta

21(k) ~e.g., in thek→` limit ! satisfy a
certain property. Since the relaxation times in Eq.~64! are
defined in terms of the lower-order frequency moment m
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trices, which gauge the behavior of the relevant dynam
processes in the short-time regime@see Eqs.~15! and~16!#, it
will be reasonable to expect that, with a certain choice ofja ,
the relaxation times in Eq.~64! will be of the same order in
magnitude as those determined from Eq.~30!. Indeed, in the
case of simple liquids, this expectation is rather satisfact
with a choice ofja5A3/2 @12#. Assuming this also to be
valid in the case of molecular fluids, we approximate the f
portion of the memory kernel in Eq.~29! with g(x)
5sech2(x) as

K fast~k,t !'UD~k!$diag@sech2„t/ta~k!…#%UD
21~k!K ~k,0!,

~66!

where 1/ta(k) is determined from Eq.~64! with ja5A3/2,
and UD(k) is a matrix which diagonalizesD(k). A similar
construction for the fast portion ofK s(k,t) will also be
adopted. Obviously, however, it remains to be done in
future to improve the treatment of the fast portion of t
memory kernels.

B. Numerical procedure

A numerical solution ofF(k,t) can be obtained by an
iterative procedure as follows. Suppose that we have thenth
approximated memory kernelK (n)(k,t). Then, thenth ap-
proximatedF(n)(k,t) is determined via Eq.~26!. When doing
this, it is more conventional to work in the frequency doma
and then to go back to the time domain. From Eq.~28!, with
Eqs. ~33! and ~66!, one obtains the (n11)th approximated
memory kernelK (n11)(k,t) in terms ofF(n)(k,t). This pro-
cedure is continued until a certain convergence criterion
satisfied, which in the present paper is chosen to be

F (
ki51

Mk

(
t j 51

Mt

$Kab
~n11!~ki ,t j !2Kab

n ~ki ,t j !%
2/~MkMt!G1/2

,1026, ~67!

for all pairs of sites, whereki and t j denote spatial~in k
space! and temporal grid numbers used in the numerical c
culation, respectively, andMk andMt are the total number o
grids.

We choose the initial memory kernel to be given by

K ~1!~k,t !5K fast~k,t !. ~68!

Thus the slow portion of the memory kernel is gradua
incorporated through the iteration procedure.

A numerical solution ofFs(k,t) can be obtained in a simi
lar fashion. Notice that it is required to solve the equatio
for F(k,t) andFs(k,t) simultaneously, since the former en-
ters the equation for the latter through Eq.~44!, while the
latter appears in the equation for the former through the a
iliary function @Eq. ~35!#. Having obtained converged resul
for F(k,t), Fs(k,t) and their memory kernels, velocity co
relation functions and the diffusion-coefficient matrix can
calculated from Eqs.~55! and ~59!. The site-site structure
factors and direct correlation functions, which are required
input in our theory for dynamics, are obtained from ex-RIS
integral equation theory@22,23#.
al

ry

t

e

is

l-

s

x-

s

IV. RESULTS AND DISCUSSION

A. System description and static structure factors

In this paper, we consider the same liquid model as pa
I. This liquid consists of rigid diatomic molecules depicted
Fig. 1, with constituent atomsA and B of massesmA
536 g mol21 and mB54 g mol21 separated from each
other by a fixed distance ofl AB52.0 Å. Atoms A and B
carry partial chargesqA520.25e andqB510.25e, respec-
tively, and the resultant dipole moment is 2.4 D. T
Lennard-Jones parameters aresA54.0 Å and eA /kB
5200 K for atomA, and sB52.0 Å andeB /kB5100 K
for atomB. It should be remembered throughout this sect
that atomA is larger and heavier than atomB. The number
density is 0.012 molecules Å23, and the temperature is 25
K.

To see a consequence of the inclusion of a slow contri
tion in the memory kernels representing the correlated co
sional effects, we have carried out two sets of calculatio
The first set of calculations was performed by letti
K (k,t)5K fast(k,t) andK s(k,t)5K fast

s (k,t) ~i.e., the memory
kernels consist of the fast portion only!, and the results so
obtained will be referred to as FAST results. Another set
calculations have been done by incorporating the slow p
tion in the memory kernels as well, Eqs.~28! and ~39!, and
the results based on this set of calculations will be cal
FULL results. It is then possible to deduce the conseque
of the inclusion of the slow portion in the memory kernels
comparing FAST and FULL results. FAST and FULL resu
together will also be referred to as the theoretical results

To test the accuracy of our theory, we have also carr
out a molecular dynamics~MD! simulation of a system com
posed of 216 molecules confined in a cubic box of len
L526.207 Å at the chosen thermodynamic point using
programIMPACT @29#. The interaction potential was calcu
lated with periodic boundary conditions and truncated atL/2.
The temperature was controlled according to Berend

FIG. 1. Schematic representation of a diatomic molecule, c
sisting of atomsA andB, in the body-fixed molecular frame wher
the origin is taken to be the center of mass and thez axis is along
the principal axis of the molecule.zA and zB denote thez coordi-
nates of atomsA andB, respectively, andl AB the bond length of the
molecule.
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7302 PRE 58SONG-HO CHONG AND FUMIO HIRATA
et al.’s ‘‘coupling to a heat bath’’ method@30#. These tech-
nical aspects of the simulation may be too primitive to ma
the simulation results conclusive. However, we believe t
the qualitative nature of the simulation results will not
changed if we employ more sophisticated techniques for
simulation such as the Ewald sum and the Nose´ thermostat
@31#. The simulation consists of 200 000 steps, with a ti
step of 1.0310215 s. The wave vectork for time-correlation
functions and their spectra is chosen to be of the formk
52p/L(n,0,0) with n51, . . . ,10, and the average over th
three independent components is performed in order to
prove the statistics. The minimum accessible wave ve
from MD simulation iskmin50.2398 Å21. The results ob-
tained from the simulation will be called MD results. T
facilitate the comparison, FAST and FULL results will als
be reported at those wave vectors where MD results
available.

Figure 2 gives the site-site static structure factors ca
lated from ex-RISM~solid lines! and from MD simulation
~circles!. It is seen from the figure that ex-RISM results a
quantitatively in good agreement with MD results, except
the peak height ofxAA(k) @32#. Thus, the discrepancy, i
found, between our theoretical results and MD results to
presented below can be attributed to a large extent to
approximations made in our theory for dynamics, which
summarized below Eq.~33! and Sec. III A.

For later convenience, we define here two quantities
terms of the site-site static structure factors which turn ou
characterize collective excitations in molecular liquids in t
small wave-vector regime~see below!. The first one is de-
fined by

x~0![xAA~0!5xAB~0!5xBB~0!, ~69!

where we have noticed that all the site-site structure fac
coincide in thek→0 limit @33#. It is well known thatx(0) is
related to the isothermal compressibility of the fluid. W

FIG. 2. The site-site static structure factors of the diatomic m
ecule, defined in Eq.~7!. Solid lines denote the results calculate
from ex-RISM, while circles represent MD results. The dash
lines are to guide the eyes.
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define the second one in terms of the second moment of
site-site static structure factors by

x9~0![xAA9 ~0!1XBB9 ~0!22xAB9 ~0!, ~70!

with

xab9 ~0!5 lim
k→0

d2xab~k!/dk2. ~71!

x9(0) is related to the dielectric constante of the fluid
@34,35#, and for our model liquid, it holds that

x9~0!5
1

2pbrqA
2 S 12

1

e D . ~72!

B. Longitudinal current spectra

In this subsection, we study collective density fluctuatio
in the molecular fluid on the basis of the GLE@Eq. ~26!#. As
in our earlier study in paper I, this will be done by analyzin
the longitudinal current spectraCL(k,v) rather than the dy-
namic structure factorsS(k,v). Since the fluctuations in
density are intimately related to those in the longitudin
current due to the continuity equation@Eq. ~3!#, the physical
information contained in these two quantities are essenti
the same@see Eq.~14!#, and the peak positions in the long
tudinal current spectra in the small-k region can naturally be
assigned to collective excitation modes in the fluid@10#.

According to Eq.~26!, the collective density fluctuation
are characterized by two basic quantities^vk

2& andK (k,t). If
we neglect the latter~the nondamping approximation!, there
would be resonances at frequencies determined by^vk

2&,
which depends on the inertia parameters contained inJ(k)
~whose explicit expression was presented in paper I! and on
the static structure factors of the fluid@see Eq.~27!#.

Detailed analysis of̂ vk
2& of the liquid under study was

carried out in paper I based on the matrix-diagonalized p
cedure. It was shown that there are two different eigenmo
in this liquid which are collective in the small-k region: the
acoustic and optical modes, which arise essentially from
translational and rotational~librational! motions of constitu-
ent molecules.~Equivalently, it can be said that these tw
modes originate from the mass-density and charge-den
fluctuations of molecules, respectively.! Their resonance fre-
quencies within the nondamping approximation in thek
→0 limit are given by@1#

vacou
2 ~k→0!5

kBT

Mx~0!
k2, ~73!

vopti
2 ~k→0!5

4kBT

3Ix9~0!
l AB
2 , ~74!

whereM andI are the total mass and the principal moment
inertia of the molecule, respectively. It is important to noti
that vopti(k) does not vanish in thek→0 limit. ~The term
‘‘optical’’ comes from this fact.! Thus, the analysis of̂vk

2&
reveals the existence of two distinct resonances in the co
tive density fluctuations, the lower-frequency acoustic mo
and the higher-frequency optical one.

l-

d
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PRE 58 7303TIME-CORRELATION FUNCTIONS IN MOLECULAR . . .
These resonances determined by^vk
2& are shifted and

damped by the memory kernelK (k,t). Figures 3 and 4 re-
port the theoretical results forKAA(k,t) and KBB(k,t), re-
spectively. In these figures, FAST and FULL results are
noted as dashed and solid lines, respectively, and the
portion of the memory functions shows up as the differen
of them.

The first noteworthy features from Figs. 3 and 4 are t
the slow contribution inKAA(k,t) is larger than that in
KBB(k,t), and that the overall decay ofKAA(k,t) is slower

FIG. 3. Normalized memory functions of atomA, KAA(k,t), for
k52pn/L with n51, . . .,10. Solid and dashed lines denote FAS
and FULL results, respectively.

FIG. 4. Normalized memory functions of atomB, KBB(k,t), for
k52pn/L with n51, . . .,10. Solid and dashed lines denote FAS
and FULL results, respectively.
-
w

e

t

compared toKBB(k,t). These features are reasonable cons
ering that the larger atomA suffers more collisional effects
compared to the smaller atomB, and that the heavier atomA
is primarily responsible for the slower translational moti
of the molecule, whereas the faster rotational~or librational!
motion mainly originates from the motion of the lighter ato
B. Another feature we found from a visual inspection
figures of the memory kernel in the larger wave vectors~not
shown! is that the contribution from the slow portion de
creases as the wave vector is increased. This can be un
stood by noting that the dynamics is more determined
short-duration events in the large-k regime~i.e., in the short-
distance scale!.

Now let us analyze the theoretical results for the longi
dinal current spectra obtained by solving the GLE@Eq. ~26!#,
that incorporates the damping effect from the memory k
nel. The longitudinal current spectra for atomsA and B,
CL,AA(kv) and CL,BB(kv), are presented in Figs. 5 and
respectively. In these figures, FAST and FULL results
denoted as dashed and solid lines, respectively, and
intensities are scaled by the same factor such that the a
under FAST and FULL results are equal at each wave vec

Two different excitation peaks can be observed from Fi
5 and 6 which are predicted from the analysis of^vk

2&, and
are damped due to the presence ofK (k,t). The lower-
frequency peaks are those of the acoustic mode, which s
up mainly inCL,AA(k,v), since the larger and heavier ato
A is primarily responsible for the translational motion of th
molecule. The lower-frequency peaks are also observabl
Fig. 6 at small wave vectors~especially atn51) since, of
course, atomB also participates in the translational motion
the molecule. However,CL,BB(k,v) is dominated by the
contribution by the contribution from the higher-frequen
optical mode since the smaller and lighter atomB is mainly

FIG. 5. The longitudinal current spectra of atomA, CL,AA(k,v),
as a function ofv for k52pn/L with n51, . . .,10, in arbitrary
units. Solid and dashed lines denote FAST and FULL results,
spectively, and circles represent MD results. These results
scaled and shifted appropriately~see the text!.
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7304 PRE 58SONG-HO CHONG AND FUMIO HIRATA
responsible for the orientational motion of the molecule.
Let us investigate how the inclusion of the slow contrib

tion in the memory kernel affects the excitation profiles
comparing FAST and FULL results. From the results in F
3, one expects a non-negligible effect from the slow con
bution on the acoustic-mode excitation profiles, especially
the small-k region. We see from Fig. 5 that FULL resul
~solid lines! differ from the corresponding FAST resul
~dashed lines! especially in the lower-frequency parts of th
acoustic-mode resonances: the difference reflects the e
of the inclusion of the slow portion in the memory kerne
This trend, however, decreases as the wave vector is
creased, since the dynamics in the large-k regime is mainly
accounted for by the short-duration events. On the ot
hand, FAST and FULL results for the optical-mode exci
tion profiles presented in Fig. 6 do not differ so significant
This feature is expected from the results in Fig. 4, and
noting that the optical mode originates from the faster p
cesses~librational motions! in the liquid.

The wave-vector dependence of low and high peak
quencies~dispersion relation! of the longitudinal current
spectra are shown in Figs. 7~a! and 7~b!, respectively. In
these figures, FAST and FULL results are again denoted
dashed and solid lines, respectively. The dispersion beha
of the acoustic and optical modes shows the same tren
we discussed in paper I. It is seen from Figs. 7~a! and 7~b!
that the peak frequencies are rather well reproduced eve
taking into account only the fast portion of the memory k
nel. Thus the effect of the inclusion of the slow contributi
in the memory kernel mainly shows up in the spectral wid
of the lower-frequency acoustic mode.

Finally, we compare the theoretical results with MD r
sults. The longitudinal current spectra obtained from the M
simulation are presented as circles in Figs. 5 and 6. To

FIG. 6. The longitudinal current spectra of atomB, CL,BB(k,v),
as a function ofv for k52pn/L with n51, . . .,10, in arbitrary
units. Solid and dashed lines denote FAST and FULL results,
spectively, and circles represent MD results. These results
scaled and shifted appropriately~see the text!.
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cilitate the comparison with the theoretical results, MD r
sults are scaled vertically and shifted horizontally such t
their peak positions and intensities coincide with FULL r
sults. The actual peak frequencies obtained from MD sim
lations are separately reported as circles in Figs. 7~a! and
7~b!.

Concerning the spectral width of the acoustic-mode ex
tation profiles presented in Fig. 5, FULL results show bet
agreement with MD results, and the inclusion of the slo
contribution in the memory kernel actually improves the th
oretical results. However, the theoretical results near
peak position ofxAA(k) ~i.e., n56,7, and 8! deviate rather
significantly from MD results. The disagreement is par
due to the equilibrium structure functions used in our the
retical calculations: as we have seen in Fig. 2, the p
height ofxAA(k) obtained by ex-RISM is not in good agree
ment with that obtained from MD simulation. This is als
reflected in the acoustic-mode dispersion relation nearn57
presented in Fig. 7~a!. Another reason for the disagreeme
seems to lie in our approximate treatment of the fast port
of the memory kernel~see Sec. III A!, since the disagreemen
is significant at the level of FAST results.

The theoretical results for the optical-mode excitati
profiles are in fair agreement with MD results in the smalk
region, but the agreement becomes worse at larger wave
tors. We presume that a primary reason for the discrepa
also lies in our approximate treatment of the fast portion
the memory kernel~see Sec. III A!, since the motion of atom
B is mainly responsible for the optical mode and sin
KBB(k,t) is largely determined by its fast portion~see Fig.
4!. Thus it is clear that Eq.~66! may be a rather rough ap
proximation for the fast portion of the memory kernel, a
the improvement of the treatment should be investigated
the future.

As can be seen from Figs. 7~a! and 7~b!, compared to MD
results, our theoretical results reproduce the correct wa
vector dependence of the peak frequencies both of the ac
tic and optical modes, although they are not in quantitat
agreement. It is also seen from these figures that the in
sion of the slow contribution in the memory kernel seems

e-
re

FIG. 7. The dispersion relation of the~a! acoustic and~b! optical
modes as evaluated from the peak positions in the longitudinal
rent spectra. Solid and dashed lines denote FAST and FULL res
respectively, and circles represent MD results.
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PRE 58 7305TIME-CORRELATION FUNCTIONS IN MOLECULAR . . .
improve the theoretical results toward MD results.
The MD result for the optical mode at the lowest wa

vector ~i.e., n51) in Fig. 7~b! is seen to behave differentl
from the theoretical results. However, we have confirm
that the peak frequency of the optical mode at the low
wave vector depends largely on the cutoff length used in M
simulation for the interaction potential, and the exceptio
behavior seems to be an artifact caused by the cutoff. T
indirectly indicates the collective nature of the optical-mo
resonances in the small-k region.~The collective and single
particle nature of the excitation modes were already d
cussed in paper I, and it is possible to discuss the s
matter based on the present work. We have verified that
conclusion does not change from paper I, and such a dis
sion will be omitted here for brevity.!

C. Velocity autocorrelation functions and diffusion coefficients

We next turn our attention to single-particle dynamic
Specifically, here we analyze velocity autocorrelation fun
tions and diffusion coefficients of the molecular liquid.

Figure 8 reports the normalized memory functions for
velocity correlation functionsK (t) defined in Eq.~55!, for
atomsA and B: solid and dashed lines denote FAST a
FULL results, respectively. It is seen by comparing FAS
and FULL results that the contribution from the slow porti
is larger forKAA(t) compared toKBB(t), which is the same
trend as we have observed in Figs. 3 and 4.

The normalized velocity autocorrelation functions are p
sented in Fig. 9 which is obtained by solving Eq.~55!, and
their spectra are reported in Fig. 10, along with MD resu
In these figures, again, solid and dashed lines denote F
and FULL results, respectively, and circles represent M
results. In Fig. 10, FAST and FULL results are scaled by
same factor such that the areas under them are equal, w
MD results are scaled so that their peak intensities coinc
with those of FULL results.~No horizontal shift of MD spec-
tra is attempted in Fig. 10.!

From Figs. 9 and 10, one sees that, although the ove
features are well reproduced by our theory, the theoret
results for the velocity autocorrelation function and its sp

FIG. 8. Normalized memory functions of atomsA and B,
KAA(t) andKBB(t), for the velocity correlation functions. Solid an
dashed lines denote FAST and FULL results, respectively.
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trum for atomA are not in good agreement with MD result
even with the inclusion of the slow portion of the memo
kernel. On the other hand, the theoretical results for atomB
are in fair agreement with MD results, and that the inclus
of the slow contribution in the memory kernel is seen
improve the theoretical results.

We next discuss the diffusion coefficients of our mod
liquid. To this end, we take the same approach as that
ployed in paper I in analyzinĝ vk

s&, i.e., the matrix-
diagonalization procedure.

Thek-dependent diffusion-coefficient matrix is calculate
from Eq. ~59!, and its eigenvalues are reported in Fig. 11~a!.
~For brevity, only FULL results are reported in Fig. 11!
Figure 11~a! clearly shows that there are two eigenvalues
D(k) which behave in the small-k regime as we anticipated
in Sec. II E@see Eq.~63!#: one of the eigenvalues behaves
k2DT in the small-k regime@solid line in Fig. 11~a!#, while
the other converges into a finite value (DR) in thek→0 limit

FIG. 9. Normalized velocity autocorrelation functions of atom
A andB, ZAA(t) andZBB(t). Solid and dashed lines denote FAS
and FULL results, respectively, and circles represent MD resul

FIG. 10. Spectra of the velocity autocorrelation functions
atomsA andB, ZAA(v) andZBB(v). Solid and dashed lines denot
FAST and FULL results, respectively, and circles represent M
results. These results are scaled~but not shifted! appropriately~see
the text!.
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7306 PRE 58SONG-HO CHONG AND FUMIO HIRATA
@dashed line in Fig. 11~a!#. As mentioned in Sec. II E, the
former can be regarded as the translational diffusion coe
cient, and the latter the rotational diffusion coefficient.

To further confirm thatDT and DR actually reflect the
translational and rotational motions of the molecule, resp
tively, we investigate how the motion of each atom in t
molecule contributes toDT andDR. The contributions from
each atom to the translational and rotational diffusion co
ficients can be extracted in the following way. Diagonalizi
the matrixD(k) corresponds to changing the description
the system from one in terms of the densities of each a
drA(k) anddrB(k) to one in terms of their linear combina
tion,

xA~k!drA~k!1xB~k!drB~k!, ~75!

wherexA(k) andxB(k) are the components of the eigenve
tor corresponding to each eigenvalue ofD(k).

Figure 11~b! reportsxA(k) and xB(k) corresponding to
the k2DT branch, normalized such thatxA

2(k)1xB
2(k)51. It

is seen from the figure thatxA(k)5xB(k) holds in thek
→0 limit. This reveals that both atoms in the molecu
equally contribute toDT, and thus verifies thatDT originates
from the center-of-mass translational motion of the m
ecule.

Figure 11~c! presentsxA(k) and xB(k) corresponding to
theDR branch. Note from the figure thatxA(k) andxB(k) in
the k→0 limit are opposite in sign; thus atomsA and B
contribute toDR in an out-of-phase fashion in terms of E
~75!. ~Suppose that a molecule in Fig. 1 rotates around thx
axis. Then thez component coordinate of atomA decreases
while that of atomB increases. The out-of-phase fashi
mentioned above implies this kind of motion, i.e., rotatio
Also see the discussion concerning the matrix^vk

2& pre-

FIG. 11. ~a! Diffusion coefficients as evaluated by diagonalizin
the diffusion-coefficient matrixD(k). Only FULL results are re-
ported. Solid and dashed lines denotek2DT andDR branches of the
eigenvalues ofD(k), respectively. ~b! xA ~solid line! and xB

~dashed line! defined in the text corresponding to thek2DT branch.
~c! xA ~solid line! and xB ~dashed line! corresponding to theDR

branch.xA andxB are normalized such thatxA
21xB

251.
fi-

c-

f-

f
m

-

.

sented in paper I.! It should be also noted that the magnitu
of xB(k) is larger than that ofxA(k), indicating that the
lighter atomB is more responsible in determiningDR. These
facts confirm thatDR indeed reflects the rotational motion o
the molecule.

Numerical FAST and FULL results forDT and DR are
reported in Table I. FULL results for diffusion coefficien
are small compared to FAST results, since the inclusion
the slow contribution in the memory kernel increases
translational as well as rotational frictions ‘‘felt’’ by the
tagged molecule@see Eq.~57!#.

MD results forDT and DR are also calculated from tra
jectories using the standard formulas@11#

DT5 1
3 E

0

`

dt^vC~0!•vC~ t !&, ~76!

DR5 1
2 E

0

`

dt^v~0!•v~ t !&, ~77!

wherevC(t) andv(t) denote the center-of-mass velocity an
the angular velocity of a molecule, respectively, and
given in Table I. It is seen from the table that the FUL
result for DR is in good agreement with the correspondi
MD result, while that forDT is not so good. This is in accord
with our observation in Figs. 9 and 10, since the veloc
autocorrelation function of the lighter atomB reflects the
orientational motion of the molecule, for which the theore
ical results are found to be in good agreement with M
results.

V. CONCLUDING REMARKS

In the present paper, numerical results were presented
longitudinal current spectra, velocity autocorrelation fun
tions, and diffusion coefficients of a model diatomic liqu
using the theory developed in paper II. The theory is ba
on the interaction-site model for molecular liquids, th
projection-operator formalism of Zwanzig and Mori, and t
mode-coupling theory. By comparing FAST and FULL r
sults, the effect of the inclusion of the slow contribution
the memory kernels on the aforementioned dynamical qu
tities was discussed. The molecular dynamics simulation
the same system was also performed to test the accurac
the theory, and the theoretical results were found to be in
agreement with the simulation results.

Finally, one should note the following important featu
which our theory for dynamics based on the interaction-s
model~ISM! provides. That is, although our theory based

TABLE I. The theoretical and MD results for the translation
and rotational diffusion coefficients. The theoretical results are
tained by taking thek→0 limit of the eigenvalues ofD(k) ~see the
text!.

FAST FULL MD

DT (Å 2 ps21) 0.367 0.091 0.501
DR(ps21) 1.325 0.712 0.744
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PRE 58 7307TIME-CORRELATION FUNCTIONS IN MOLECULAR . . .
the ISM stands on the atomic viewpoint~more precisely, the
correlated-atom viewpoint due to the presence of chem
bonds!, and the resulting dynamical correlation functions a
the site-site ones, it is possible to extract such physics
molecular liquids as the translational and rotational motio
from the site-site correlation functions. For instance, the s
site longitudinal current spectra can be reasonably in
preted in terms of the acoustic and optical modes aris
respectively, from the translational and rotational motions
the molecules. The latter viewpoint was employed in R
@36# in the problem of the ionic friction in a polar liquid, an
it has been demonstrated that contributions from the tran
tional and rotational motions of surrounding solvent m
ecules on an ionic friction can be separately discussed
taking appropriate linear combinations of the site-site spa
time density correlation functions. As another example,
showed in Sec. IV C, although a bare application of Eq.~59!
to a polyatomic fluid results in a diffusion-coefficient matr
whose elements represent the correlated atomic diffusio
is possible to extract the translational and rotational diffus
coefficients of the molecule by diagonalizing the mat
D(k). It is worth noting that, to our knowledge, this is th
first molecular theory topredict the rotational diffusion co-
efficient from first principles.
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This feature in our theory is in contrast to another meth
of describing the dynamics of polyatomic fluids, i.e., the o
based on rotational invariant expansions@33,37,38# which
can deal explicitly with reorientational motion as well a
center-of-mass-motion-dependent quantities. However,
method based on rotational invariant expansions beco
increasingly difficult as the asphericity of a molecule b
comes larger, since the convergence of the invariant exp
sion is slow. Our theory based on the ISM, on the other ha
does not suffer from this problem, and is superior to t
other in applying to a system consisting of complicated m
ecules. Thus our theory is not only capable of treating
general class of polyatomic fluids without too much dif
culty, but can also be used to extract the important physic
molecular liquids, and paves a way toward a theory for d
namical processes in polyatomic fluids.
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@20# L. Sjögren, Phys. Rev. A22, 2866~1980!.
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